Search results for "Current collector"

showing 4 items of 4 documents

AC impedance behavior of the Ti4Ni2Oy and Ti3.5Zr0.5Ni2Oy type metal hydride electrodes

1999

The hydrogen storage alloy electrodes of the type Ti4Ni2Oy (y=0, 0.3 and 0.6) and Ti3.5Zr0.5Ni2Oy (y=0.15 and 0.3) were investigated by impedance spectroscopy for potential application as negative electrode in alkaline secondary nickel-metal hydride (MH) batteries. The phase Ti4Ni2O0.30 was found to be electrochemically more stable during the cycling. The addition of copper or nickel powder as current collector improved the electrochemical behavior of the electrodes. It was possible in this way to decrease the charge transfer resistance. These additions have a negligible influence on the stability of electrode material during cycling.

Materials scienceHydrideGeneral Chemical EngineeringInorganic chemistryGeneral EngineeringGeneral Physics and Astronomychemistry.chemical_elementCurrent collectorElectrochemistryCopperDielectric spectroscopyNickelHydrogen storagechemistryElectrodeGeneral Materials Science
researchProduct

Performance evaluation and stability of silicide-based thermoelectric modules

2020

Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…

010302 applied physicsMaterials scienceOpen-circuit voltage02 engineering and technologyInternal resistanceCurrent collector021001 nanoscience & nanotechnologyMagnesium silicide01 natural sciencesIsothermal processVDP::Teknologi: 500::Elektrotekniske fag: 540chemistry.chemical_compoundThermoelectric generatorchemistry0103 physical sciencesThermoelectric effectSilicideComposite material0210 nano-technology
researchProduct

CuZnSnSe NANOTUBES AND NANOWIRES BY TEMPLATE ELECTROSYNTHESIS

2014

In this work we present some results of an extensive investigation aimed to find suitable conditions to grow CuZnSnSe (CZTSe) nanostructures through single-step electrodeposition into the channels of polycarbonate membranes. After the optimization of several electrodeposition parameters, we have found that pulsed current deposition, between 0 and -1 mA cm-2, is the best way to obtain CZTSe nanostructures mechanically attached to the support. An interesting result concerns the effect of supporting electrolyte in the deposition bath. In fact, changing its concentration it is possible to vary morphology of nanostructures from nanotubes to nanowires. In both case uniform arrays of ordered nanos…

NanostructureMaterials scienceSupporting electrolyteNanowirePhotovoltaic applicationNanotechnologyThermal treatmentCurrent collectorElectrosynthesisTemplate ElectrosynthesiNanotubeNanowireSettore ING-IND/23 - Chimica Fisica ApplicataCuZnSnSe NANOTUBES NANOWIRES TEMPLATE ELECTROSYNTHESISDeposition (phase transition)Polycarbonate membraneCuZnSnSe
researchProduct

High-performance of PbO2 nanowire electrodes for lead-acid battery

2014

Abstract PbO2 nanowires were obtained by template electrodeposition in polycarbonate membranes and tested as positive electrode for lead-acid battery. Nanowires were grown on the same material acting as current collector that was electrodeposited too. The nanostructured electrodes were assembled in a zero-gap configuration using commercial negative plate and separator. Cell performance was tested by galvanostatic charge/discharge cycles in a 5 M H2SO4 aqueous electrolyte. PbO2 nanostructured electrodes were able to deliver at 1C rate an almost constant capacity of about 190 mAh g−1 (85% of active material utilization), close to the theoretical value (224 mAh g−1). The nanowire array provide…

Materials scienceDischarge capacityRenewable Energy Sustainability and the EnvironmentNanowireEnergy Engineering and Power TechnologyLead-acid batteryNanostructured electrodeNanotechnologyElectrolytePenetration (firestop)PbO2 nanowireCurrent collectorTemplate electrodepositionNanowire batterylaw.inventionSettore ING-IND/23 - Chimica Fisica ApplicatalawElectrodeElectrical and Electronic EngineeringPhysical and Theoretical ChemistryComposite materialLead–acid batterySeparator (electricity)
researchProduct